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INTERFERENCE METHOD FOR OBTAINING THE POTENTIAL FLOW PAST AN
ARBITRARY CASCADE OF AIRFOILS

By 8. Katzorr, RoserT S. Fin¥, and Jaues C. LAURENCE

SUMDMARY

A procedure is presented for obtaining the pressure distribu-
tion on an arbitrary airfoil section in cascade in a two-
dimensional, incompressible, and nonviscous flow. The method
considers directly the influence on a given airfoil of the rest of
the cascade and exaluates this interference by an iterative process,
which appeared to converge rapidly in the cases tried (about unit
solidity, stagger angles of 0° and 45°). Two variations of the
basie inierference caleulations are deseribed. One, which 1s
aceurate enough for most purposes, involves the substitution of
sources, sinks, and vortices for the interfering airfoils; the other,
which may be desirable for the final approximation, involres a
contour integration. The computations are simplified by the
use of a charl presented by Betz in a related paper. The numer-
ieal labor involred, while considerable, is less than thai required
by the present methods of conformal transformation. Illus-
trative examples are included.

INTRODUCTION

The rapid increase of interest in the design of fans and
turbines has led to many studies of the two-dimensional flow
past infinite lattices. Mlost of these studies involve approxi-
mate procedures (for example, references 1 to 3) or present
solutions for special classes of shapes (references 4 and 5).
Recently, attempts have been made to obtain exact solutions
by conformal transformation of the lattice to a circle. To
this end, Howell (reference 6} used a procedure that first
transformed the lattice to an isolated S-shape figure, which
could then be transformed to a near-circle by successive
Joukowski transformations and finally to a circle by the
method of reference 7. In reference 8 the cascade was
transformed first to a near-circle and then to a circle, also
with the use of several stages of conformal mapping. In
reference 9 the lattice was mapped into a lattice of straight
parallel lines by means of a function that was determined
with the aid of the transformation of this line lattice to a
circle. (See references 10 and 11.} These transformations
are of considerable interest, theoretically. The methods of
references 6 and 8 require lengthy computations, however,
and difficulty has been experienced in obtaining accurate
numerical results with the method of reference 9. All three
methods require modifications for highly cambered contours
or for lattices of high stagger and solidity.

The method presented herein does not seek a conformal
transformation directly but, like the older approximate
methods, seeks to evaluate the interference at each airfoil
due to the presence of all the other airfoils of the cascade.

The velocity distribution on each airfoil is considered to be
the sum of that corresponding to its presence in the uniform
free-stream flow plus that corresponding to its presence in
the interference flow. The interference is calculated from
the velocity distribution on the airfoils so that the method
reduces to an iteration process in which, for the first approxi-
mation, the interference is computed by assuming the free-
stream veloeity distribution to exist on each airfoil, and in
subsequent approximations this velocity is corrected accord-
ing to the interference derived in the preceding approxi-
mation. A solution is thus found for an arbitrarily specified
angle of attack, and this solution is used to find the conformal
transformation to the eircle and thence the solution for any
other angle of attack.

The present method has been found appreciably less
laborious than the methods that seek the conformal trans-
formation directly and is also considered more flexible in
that it may be adapted to a varieiy of cascade problems that
would be difficult to solve by formal transformation methods;
for example, the problem of the flow about double cascades
{or superimposed lattices) or certain types of “inverse”
problems involving the determination of the setting or
solidity for a given airfoil in cascade. Some of the features
of the interference and iteration methods used should also

be useful in the solution of flows involving a finite number of

interfering bodies.

SYMBOLS

flow function (complex potential)

velocity potential

stream function

velocity at infinity

circulation

mapping-function parameter

local velocity

vortex strength

source strength

complex variable of physical plane (z-+1iy)

fixed point in physical plane

complex variable of reference plane (£-Fin)

profile chord

profile chord used in transformation of reference 7

cascade spacing (distance between corresponding

points on adjacent blades; see fig. 1)

@ central angle of perfect circle obtained in trans-
formation of reference 7

g central angle of unit circle of figure I

surface length on profile
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FieURE 1.—Flow singularities In circle plane and corresponding velocity veetors
in physical plane,

g blade angle (angle between stagger line and normal
to chords; see fig. 1)

o solidity (ratio of chord to distance between profiles)

X angle between flow direction and normal to stagger
line

a angle of attack relative to blade chord

] angle of zero lift for cascade, relative to blade chord

Ap  static pressure rise

w turning angle of flow

p density of fluid
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@, b, Fourier series coefficients
Subseripts:

f free stream

d disturbance

e compensating

r due to circulation change
a additional

T total

¢ tail stagnation point
7 nose stagnation point
TE  trailing edge

§ due to source rows
v due to vortex rows
2 physical plane

¢ reference plane

a mean flow

1 incoming flow

2 outgoing flow

Mo at flow direction X,
Ao at flow direction Ay

THEORY OF INTERFERENCE CALCULATIONS

In order to explain better the basic concepts and pro-
cedures of the interference caleulations, discussion of the
iteration steps will be postponed for the present, and the
interference calculations will be described as if they were
being used to verify a known solution. '

Breakdown of the flow function inte four components.—
Attention is fixed on one airfoil of the infinite cascade whieh
will be designated the central airfoil. The flow function on
the boundary of this airfoil is considered to be the sum of
the following components:

W, the flow function for the central airfoil, considered as
isolated in the free-stream flow (the vector average
of the flow far in front of the cascade and the flow
far behind the cascade). Inasmuch as the boundary
is a streamline in this flow, W,=&,.

W, the disturbance along the contour caused by the pres-
ence of all the other airfoils of the cascade, designated
the external airfoils (W,=®,-+1%,).

W, the compensating flow funection (which may have
singularities only within the central airfoil) that is
required to maintain the airfoil a streamline in the
presence of the disturbance flow. It is determined
by the condition that, on the boundary, its stream
function must be equal and opposite to the disturb-
ance stream function. Thus, W.=®,+1%,, where

=—1,

TWr the contribution of the circulation that must be added
to maintain the trailing-edge condition; it has only a
real component (Wr=&rp).

The sum W,;+W.+ W7 represents the net change of flow
function due to the presence of the external airfoils; it will be
designated the additional flow function W,=®,. The sum
W,+ W, will be designated the total flow function Wr=d,.

The evaluation of the isolated, or free-stream, flow &, is
readily performed by the method of reference 7 and requires
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no further discussion in the present paper. The disturbance
flow can be calculated when the potential distribution (or
veloeity distribution) on the external airfoils is known.
Finally, the compensating flow and the circulation flow are
readily determined, as will be shown, when the disturbance
flow is known. In the following sections two methods of
calculating the disturbance flow will be deseribed: the
approximate source-vortex method and the exact contour-
integral method.

Disturbance flow by approximate source-vortex method.—
Each of the external airfoils is considered to be adequately
represented by an arrangement of about two sources, three
sinks (or negative sources), and five vortices distributed along
its mean line. The strengths and locations of these singulari-
ties are chosen on the basis of the chordwise thickness dis-
tribution and chordwise velocity distribution. The cholice is
somewhat arbitrary and may be left to the judgment of the
worker; however, a detailed method of choice has been
described in the section entitled “Computational Methods.”
The disturbance flow, then, is that of about ten infinite rows
of singularities, equally spaced along the cascade direction
except that none are located where the central airfoil is to be
placed. The field of each vortex row is shown in figure 2
where, for convenience, the vortices are assumed to be of
unit strength, spaced at unit distance along the y-axis.
This figure is from reference 1 and the equation for the flow
is (reference 2)

,.l_
] S
5y
g9
LY
=
®

W=—.=log, sinh =z

In order to find the contribution to the disturbance flow
eaused by a row of vortices at, say, 0.3 chord on the external
airfoils, the central airfoil, drawn to secale and properly
oriented relative to the caseade direction, is placed at the
center of figure 2, with the origin at 0.3 chord on the mean
line. The values of velocity potential and stream funection
read at selected points slong the airfoil contour, multiplied
by the assumed vortex strength, give directly the coniribu-
tion of this vortex row to ®, and ¥,. By shifting the central
airfoil so that the origin is located, in turn, at each of the
other assumed vortex positions along the mean line and
repeating the foregoing process, the contributions of all the
vortices in the external airfoils are obtained at the same
points. The sum of these values at a given point on the
central airfoil represents the contribution of the vortices in
the lattice to the disturbance functiom W, at that point.
The contributions of the sources can be found in the same
way except that the lines marked ¥ are considered as —@
and the lines marked & are considered as ¥. Sinks are
considered as negative sources.

Contour-integral method for evaluating disturbance flow
function.—In the preceding section, the disturbance field
was calculated approximately by representing each airfoil by
a somewhat arbitrary arrangement of vortices, sources, and
sinks distributed on the mean line. An airfoill may be
represented exactly by a continuous distribution of vortices
along its contour, the linear density of which at every point
equals the velocity on the airfoil at that point (reference 12).
The field at & point on the central airfoil due to a row of

corresponding surface elements of the external airfoils (that
is, a row of vortices of sirength vy ds) may be obtained
directly from figure 2. Integration of this contribution
along the contours of the external airfoils provides an exact
determination of the disturbance field. The procedure is an

obvious modification of the preeeding approximate method.
Let @ and ¥ (without subscripts) denote, respectively, the

“potential and stream function of the row of unit vortices in

ficure 2. In order to determine the disturbance potential
and stream function at & point z° on the central airfoil, the
airfoll contour, drawn to seale and correctly oriented relative
to the cascade direction, is superimposed on figure 2 so that
the origin falls, in turn, at a number of points z on the con-
tour, and for each setting values of & and ¥ are read at the
point 2. Then the disturbance flow function at 2’ is given

by
@d(z,):"f‘i)b’f(z) ds R

T (2" =L‘I’L’T(2) ds

where

vr(2) local velocity on the airfoil at variable point z

s distance along airfoil contour o
®, ¥ values read at 2’ when origin of figure 2 is at 2

and the integration is performed along the airfoil contour.
Since vr(z) ds=d®,(z), the foregoing equations:can be re-
written as

@d(z')=fc@ d®.(2)

V(2" =‘£‘I' d@4(2)

so that the disturbance potential and stream function at
point 2’ are readily evaluated by plotting ® andi¥ against
@&, and measuring the area under the curves

Determination of compensating flow and circulation
flow—As has been indicated, the compensating flow func-
tion may have singularities only within the central airfoil
contour, and on the contour, the stream function must be
exactly equal and opposite to the disturbance stream fune-
tion. From the known transformation of the isolated airfoil
to the circle, which was found in the process of determining
TW,, the correspondence between points on the airfoil and
points on the circle is known. If, then, the desired com-~
pensating stream function is expanded as a Fourier series
in terms of the circle angle ¢,

T, =3 (a, cos ne+b, sin ne)
n=1

its corresponding velocity potential will be (reference 7) the
conjugate series 7 B

B, =2 (—b, cos ne+a, sin ne)
#=1

The determination of &, from ¥, is readily accomplished by
the method of reference 13.
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vortiees of unit strength spaced at unit distance along the y-axis with the central vortex omitted.

FicurEe 2.—Velocity potential and stream function for a row of
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In order to maintain the trailing-edge condition, a vortex
T must be added at the center of the circle of such strength
that T'p/27 equals the value of —d® [de at the trailing edge
(determined numerically or graphically from a faired plot
of &, against ¢). The corresponding contribution to the
potential is
‘1’1‘=g—;€9

The velocity potential ®,=®,1 %} P, that constitutes
the net effeet of putting the airfoil in the cascade (that is,
the net interference effect) may now be determined by simple
addition of the three components. Presumably, since the
calculations were made with the correet @, ®, should be the
difference between &, and .

In the final step, &, is differentiated with respect to dis-
tance along the airfoil to get the corresponding interference
effect v, on the veloeity, which should be the difference be-
tween #, and vy, Convenient procedures for performing
these calculations are discussed in the section entitled “Com-
putational Methods.”

ITERATION METHOD

In the preceding sections the basic concepts and procedures
of cascade interference caleulations have been outlined. In
the present section, the application of such ealculations in
the proposed iteration method of solving cascade flow will
be discussed.

As first attempted, the method was essentially as follows:
In the first step, &y is assumed to equal $,and a fivst approxi-
mation to &, is calculated on this basis by the methods just
described. In the second step, @7 is assumed equal to the
sum of &, and this first approximation to ®,, and a second
approximation to &, is computed. The succeeding steps
follow the same pattern and are continued until two succes-
sive &, distributions are essentially the same. The source-
vortex method was used for the earlier approximations, but
the final approximation, when convergence is practically
complete, was made by the contour-integral method. This
procedure, however, was found to converge relatively slowly
in some cases, and the general practicability of the interfer-
ence method depends on a slight modification of the source-
vortex method.

The modification depends upon the observations that the
contribution of the sources and sinks to &, changes by rel-
atively little from one approximation to the next and that
the contribution of the vortices to &, is nearly proportional
to their total strength and relatively independent of their
distribution. Obviously, if it were exactly true that the
contribution of the sources and sinks is constant and that
the contribution of the vortices is proportional to their total
strength, only one interference calculation would be required
and the solution could then be obtained through a simple
algebraic equation. Thus, let

total circulation on airfoil in cascade

T'; total circulation on isolated airfoil at same angle of attack
T. additional circulation (I'y—T)

constant contribution of sources and sinks to Ty

T',, contribution of vortices to T'; when T’ is assumed on all

external airfoils
Then, by the preceding assumptions,

I
Tp=T,+Tg+ Fff Ty

whence
T -
Pyt e (1)

%
i— T,

Since the assumptions are not exactly true, the value of
T7 so caleulated is correspondingly inexact; however, it is
much closer to the true value than if it were taken simply
as TyTg +T,, Correspondingly, the potential

@T_¢,+®a‘+ £ 2,

is much more accurate than the sum ®,+&, +&.,.

The second approximation is similarly adjusted. Thus,
corresponding to the &, distribution just obtained, a new
set of sources, sinks, and vortices are distributed along the
mean line, and new values of T, and T, are calculated.
Adjustment follows, as before, from the equation

i T PTz
PT2:PIT Pa* ¥ —I‘—TI I‘as

where the subscripts 1 and 2 refer to the first and second
approximations, respectively. Seolving for Iz gives

T+ T,
I‘T2=_g (2)
1—= S

I‘Tj

and, finally, the potential is given by

Ty,

alI,@

@T =3+

This simple modification of the procedure is so effective
that, in the cases tried, the first step gave solutions that
would be satisfactory for many purposes and the procedure
had practically converged at the second step. The addi-

tional complication of Lkeeping the source-sink and the

vortex effects separate so that T'y, and T';, can be separately
computed is relatively minor and amply repaid by the
rapidity of convergence.

After the source-vortex method has essentially converged,
a final approximation by the contour-integral method may
be desirable. In the cases computed, however, this final
step was found to introduce only minor changes in the result.

THE FLOW AT OTHER ANGLES OF ATTACK

From a known velocity distribution at a given angle of
attack, the angle of zero lift and the slope of the lift curve,

together with the velocity distribution at any other angle
of attack, may be obtained. For this purpose, the lattice
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is conveniently considered to be related conformally to an
isolated circle by a periodic transformation, which might
be, say, of the type used in reference 6, 8, or 9. The explicit
form of the transformation, however, is not needed for the
present purpose.

The flow function in the circle (¢) plane that corresponds
to the desired flow in the physical (2) plane is

Ved( _, K -E\ 4T o__ oK

(3)

In the {-plane this flow may be interpreted as that due to
the system of sources, sinks, and vortices shown in figure 1.
The unit circle {=e® is a streamline of the flow and the
circulation about any contour enclosing this circle but not
enclosing the points {=4e¢* is T (positive clockwise).

In the physical (2) plane, the complex velocities at the

points 2= « and z=— » are determined by equation (3) and
the transformation. Thus, '
dl ., . T
—d? m= —_ V06_1a0+@ % ef5= —_ Tflg—{al
and
aw

7z =— Ve iv—4 %i ef=—V,e-ia2

where the angles and velocities are defined in figure 1. The
flow far from the lattice is seen to be the same as that of an
infinite vortex row in the uniform flow — Ve~ Tt should
be noted (fig. 1) that Ny=a¢+8, M=a:+8, and M=oarF5.
In the following paragraphs it will be shown how to obtain
from the given solution in cascade the parameter K and the
stagnation points 8, and 8, for the corresponding flow about
the circle. These values fix the angle of zero lift and the
slope of the lift curve of the airfoil in cascade; together with
the known potential distribution they determine the con-
formal correspondence between the profile and the circle
and, hence, the velocity distribution at any angle of attack.

Since the airfoil contour (z-plane) is conformally related
to the unitb circle (¢-plane), it follows that at any given angle
of attack «, the change of velocity potential from nose to
tail stagnation point on both upper and lower surfaces must
be the same for the circle and for the profile in cascade.
These potential changes can readily be obtained for the
single solution on the lattice from the final &, distribution.
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The velocity potential on the unit circle is obtained from
equation {3). Thus,

$ 1 cosh K4-cos 6
Vs %[COS Ao 10g°<cosh K—cos0)T
. oy sinf T - tan g
) K+ Vd tan™ N R )

and the change of potential from nose stagnation point 8, lo
tail stagnation point 4, is

A%y 1 {
oV, on j cos Ny log,

2 sin X, tan™! [

(cosh K—cos 6,){cosh K+ cos 8,)
(cosh K+ cos 6,) (cosh K—cos 6,)
(sin 6,—sin 8,) sinh A +
sinh®/X +sin 6, sin 6,
r tan-t (tan 6,—tan §,) tanh K
Vod © ! tanh?K--tan 6, tan 8,

} (8)

This potential change may be obtained for either the upper
or the lower surface. Two values are obtained depending
on the choice of quadrant for the third term of equation (5).
The condition of zero velocity at nose and tail stagnaiion
points is

sin 4 cos Ag—cos ¢ tanh K sin )\°_§TI/“7 sinh K=0 (6)
1}

By use of the known values of T, A®7, and )\, cquations (5)
and (6) can be solved simultancously for 6,, 8, and K.
Equation (6) can be considered as a quadratic in sin ¢ and
with an assumed value of K determines corresponding values
of 8, and 6,, Equation (5) then determines A®;. By the
proper choice of values of K, a curve of A®; against K may
be plotted such that at a point on this curve Ady=Ad,.
The value of K at this point is the desired value; the corre-
sponding values of 8, and & are then given by cquation (6).
A convenient initial choice for K is the value that corresponds
to a lattice of straight lines of the same stagger and of about
10 percent or 20 percent higher solidity. TFigure 3 is of aid
in this respect. The computed values of K and 8,, together
with equation (6), determine the angle of zero lift (I'=0)
with respect to the airfoll chord, thus

tan ¢ '
_ -1 i
n=tan tanh K ™

and the slope of the lift curve, based on mean velocity, is
obtained by differentiating equation (6) with respeet to Xo;
thus, o
de; 4 Vsin? 6,-Fsinh? K
dey o sinh K cosh K

(8}

A correspondence between points on the airfoil and points on the unit circle may be obtained by comparing the values
of ®; computed by equation (4) with the values of &, from the known potential distribution. The points (r,y} on the
profile and ¢ on the circle for which ®:=®; are corresponding points. The velocity on the lattice profile for the stream

angle Ay is

d¢

OF

dz

i@l;___ld_g’lill:cos Ao cosh K (sin §—sin #,) —sin ), sinh K (cos 6—cos 8
Vo do |dzir

D)
cosh? K—cos? 0 :I
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where the term in brackets, which represents the velocity on the circle boundary, is obtained by differentiating equa-

tion (4). It follows that the velocity corresponding to a new stream angle My is .

(‘_v N '”x_‘) [cos N’ cosh X (sin §—sin 8,) —sin X, sinh K (cos 6—cos 9,):[ ©)
Vg)mf—(Vc_ A cos Ny cosh K (sin f—sin 8,) —sin Xy sinh & (cos 8—cos 8,)

Solidity, 6
Ny
Z
Q

ey
J
o
<

WY
LA /LS

\\
\
Q\§
S —
A,
e R

\\
——

ag &) 30 45 &0 s 0

Slade arngle, 8, deg

FIGURE 3.—Relation between solidity, blade angle, and rarareter K for an infinife Tattice of
flat 1 lates.

The following relations, which describe the flow far away
from the lattice, are of interest. The stream angles \; and
A\ at z=w and z=—w= are

—_— -1
A=tan cos M
and
. T
s )\0_'5—
A= tan-! — =2Ved
cos )\o

and the angle through which the fluid is turned by the lat-
tice is given by

T
== COS A
70d 0

1‘(:75071_)2

The rise in static pressure across the lattice is
Ap _< 71>2 <V£ :
_§ PVQ2 0 a

=cos? \g (sec® \;—sec? \,)

w=tan™!

REMAREKS ON CONTQUR MODIFICATIONS CORRESFONDING
TO LOCAL PRESSURE CHANGES

In reference 14, the modification of an airfoil contour to
obtain, approximately, desired small changes in the pressure
distribution is discussed. The method, based on the for-
mulas of reference 7, evaluates a slight modification of the
conformal transformation of the cirele to the airfoil, such that
the stretching factor at every point is changed in proportion
to the desired relative change in local velocity.

Although in reference 14 the airfoil was assumed to lie in

a straight uniform field, the treatment is equally applicable

when the airfoil is in a curved or distorted flow field. Accord-
ingly, the procedure should be applicable to airfoils in cascade,
provided the same modification of the external airfoils leaves
the disturbance flow field essentially unaffected. This
condition. may not always be satisfied; however, in such
cases the method could possibly be improved by a procedure
analogous to that described in the section of the present
paper entitled “Tteration Method.”

COMPUTATIONAL METHODS

The basic theory has been presented. In the following

sections some of the methods used for performing the actual
computations will be discussed.

Selection of points for evaluation of disturbance flow.—
The determination of the compensating flow by the method
of reference 13 requires that the disturbance flow be evaluated
at points that, by the conformal transformation of the
isolated airfoil to a circle, correspond to points equally
spaced about the circle. These points, which are located by
reference to the conformal transformation, are preferably
chosen so that one is at the trailing edge. Experience has
shown that 12 points at 30° intervals yield acceptable results,
at least in the first approximation, but that 24 points at 15°
intervals are desirable in the final approximation for best
accuracy. If the final approximation is by the contour-
integral method, which is rather tedious, an acceptable
compromise is as follows: Evaluate ®, and ¥, directly at 15°
intervals only in the region of the leading edge and at 30°
intervals over the remainder of the contour, interpolating
from s faired curve to determine ®; and ¥, for the remain-
ing 15° interval points.
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Inasmuch as values for the 12-point and 24-point methods
are not included in reference 13 the following table is pre-
sented:

Cr
k -
n=6 =12
1 0. 62201 0.63298
3 . 16667 .20118
5 . 04466 .10860
7 e .06394
9 e . 03452
S5 S I . 01067

Evaluation of ®; and v,—Integration of equation (36) of
reference 7 along the civcle boundary yields the values of the
potential &, at points on the airfoil as follows:

F=2aenp sin (a8)—cos (a+)] (10)
where
a angle of attack
B angle of attack for zero lift
ae¥o radius of the circle to which the airfoil transforms
@ angular position along the circle, as determined by

the transformation

If the transformation has been performed as recommended
in reference 7, the constant « will be slightly less than one-
fourth the chord. Although the potential discontinuity (cor-
responding to the cireulation) may, without loss of gener-
ality, be placed at any point on the contour, the trailing
edge will generally be found to be the most convenient
location.

The additional velocity , is given by the derivative along

the surface Cgﬁ“; it may be determined by numerically or

graphically differentiating &, with respect to the circle

angle ¢ and multiplying this slope by g—qf Thus,
o_1d8_1dede
Vo Vo ds Vi, de ds

The value of E—ﬁf may be obtained from equations (37) and

(38) of reference 7. Thus, 7
dz do

B <1 -I-% AL
= 2\/ [ 1+ (%\é—/)?:' [sinh®¥ - sin’]

de

ds 5 a\/ [:1 + (C(ZZ_\?)Z] E5111h2€f—i: sin(‘;é]

where the symbols ¢, 8, and ¥ are defined in reference 7.

(12)

or
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The cascade solidity need be taken into account only when
the airfoil sketch to be used with figure 2 is constructed.
For the subsequent calculations, any convenient airfoil
chord may be used, provided only that the same chord is
used for the external airfoils and for the central airfoil. The

‘reason is as follows: The strengths of the sources, sinks, and

vortices used to represent the external airfoils are propor-
tional to the assumed airfoil chord; hence the additional
potentials induced on the central airfoil will be proportional
to the assumed chord. Since both the additional potential
@, and the distance s along the contour are proportional to

the chord, the additional velocity va=% will be independ-

ent of the chord.

The chord may then conveniently be chosen as that cor-
responding to a=1since @ would then not appear in equations
(10) and (12).

The net velocity at a point on the airfoil surface is the
algebraic sum of the velocity on the isolated airfoil and the
induced velocity v, at that point.

Selection of vortices for source-vortex method.—Xor cas-
cades of about unit solidity, the vortex distribution for an
airfoil of conventional design may be represented by five
vortices spaced on the mean line at 0.1, 0.3, 0.5, 0.7, and
0.9 of the chord. The strengths of the vortices are deter-
mined by the known chordwise distribution of potential
&7, on the upper and lower surfaces for the given approxima-
tion. Thus, the difference in potential between the upper
and lower surfaces at 0.2 chord is approximately the total
vorticity between the leading edge and 0.2 chord and is
considered to be concentrated in the vortex at 0.1 chord;
similarly, the increase in this potential difference between
0.2 chord and 0.4-chord yields the strength of the vortex at
0.3 chord, and so on. The total vortex strength must satisfy

T (&3]

the equation P

Selection of sources and sinks for source-vortex method.—-—-- -

The selection of sources and sinks to represent the thickness
distribution of airfoils is less readily systematized than is the
selection of vortices to represent the lift distribution. For
conventional airfoils, a reasonably satisfactory representa-
tion is generally attainable with a source at about 0.025
chord, a second source midway between the nose and the
position of maximum thickness, and sinks at’ 0.5, 0.7, and
0.9 of the chord. The strength of each source or sink is
taken as the difference between the “internal flow” at a
station midway between it and the preceding source, and
the internal flow at a station midway between it and the
following source. This internal flow at a given station is
estimated to be the product of the thickness and the average
of the upper and lower surface velocities at that station,

Obviously, not all airfoil shapes will be best treated accord-
ing to the pattern just described; however, little ingenuity is
required to adjust the treatment to a particular shape,
In any case, the total source strength must equal the tolal
sink strength,
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PROCEDURE

A suggested step-by-step procedure is as follows:

(1) Obtain the velocities on the airfoil at the given angle
of attack in a uniform siream by the method of reference 7.
This step also determines a conformal correspondence be-
tween points (r, ) on the airfoil and angles ¢ on a circle,
and hence the potential distribution @, by equation (10).

(2) Using the procedure described in the section entitled
“Computational Methods,” choose sources, sinks, and vor-
tices to represent the airfoil.

(3) Choose points around the airfoil at which the disturb-
ance function W is to be found; these points are conven-
iently chosen, by reference to the conformal transformation,
to correspond to 24 (or 12) equal intervals about the circle.
By use of figure 2, determine at these points the contributions
to ®,; and ¥, of each source and vortex row. Sum separately
the values due to sources and vortices at each point.

(4) Form the compensating functions ¥,=—%¥, both for
vortices and sources and determine the conjugate functions
®, by the method of reference 13. Plot &, against ¢ and
determine the slope at the trailing-edge point. The relation

Ty=—2x (d@c determines the eirculation changes I', and
de 1z *

T',, due to the source and vortex rows.
of equation (1).
(5) At each point

Obtain I'r by means

(a) Sum the valuesof &, and ®., due to the vortexrows
and multiply by the ratio Is,
I

(b) Sum the values of &, and @, due to the rows of
sources and sinks.

() Find ®pr=(Tr—T)) o=

(6) Sum the terms (a), (b), and (c¢) of step (5) to get &,;
plot &, against the cirele angle ¢, and determine the slopes
at the points used in the original conformal transformation

(step (1)) at which points the stretching factor %‘—; will be

known. (Another procedure is to determine the slopes at
the 24 equally spaced points by some numerical method and
then to determine the stretching factors at these points by
interpolating from the values found in the conformal trans-
formation.} The additional velocity is given by equation
(11); the net veloecity on the airfoil surface is the sum of the
additional velocity and the velocity on the isolated airfoil.
The corresponding total potential is &,=%.4%,+%r+&,,
where &, is known from step (1).

Using this new potential and velocity distribution, repeat
the procedure, starting from step (2). The only modification
is that Ty (step (4)) is now obtained from equation (2), and
in step (5a) the correction factor is I'z /T . The process is
continued until the changes in lift and velocity distribution
become small. For practical purposes, the results obtained
in this manner may be entirely satisfactory. More accurate

results may be obtained, however, by application of the
contour-integral method as deseribed in the following three
steps.

(7) Place the airfoil drawing on figure 2 with the origin,
in turn, at each of the 24 (or 12) points at which values are
known from step (6) (considered as z-points), and read the
chart at the same 24 points (considered as z’-points). As
previously noted, some of the z'-points may be neglected.
For each of the z/-points plot the values of ® read at that
point against the corresponding values of ;. By planimetry
find the area between the faired ecurve and the ®r—axis to
determine ®;. The value of ¥, for each point is determined

similarly from a plot of ¥ against the corresponding values

of &r.
(8) Form the function ¥.=—7,, determine its conjugate
®,; the circulation change is To=—2x (‘?) and the
o /re

@

potential =T, 5

(9) Sum the terms &,, &, and ®; to get ®,, plot against

the circle angle ¢, and measure the slopes. The velocities on
the airfoil surface In cascade are obtained as described in
step (6). Unless this velocity distribution differs widely
from that obtained in the preceding approximation, it
should not be necessary io repeat the procedure. L

The velocity distribution at another angle of attack may
be obtained as follows:

(a) Solve equations (5) and (6) for 6, &, and K. A
method of solution is indicated in the discussion following
equation (6). The angle of zero lift and slope of the lift
curve may then be obtained from equations (7) and (8).

(b) Obtain the potential distribution &; as a funetion of 6
(equation (4)); compare with the known &, to get a corre-
spondence between 6 and position on the airfoil. Equation (9)
then yields the velocity distribution at stream angle A,

ILLUSTRATIVE EXAMPLES

Example I.—The velocity distribution was obtained on the
NACA 4412 airfoil in the configuration shown in figure 4,
where §=0°, ¢=1.032, and »=9.7°. This example has been
treated in reference 8. In accordance with the foregoing
procedure, results as follows were obtained:

(1) In figure 5 is shown the chordwise velocity distribu-
tions of the isolated airfoil at the angle of attack of 9.7°, as

obtained in a second approximation by the method of

reference 7. The lift coefficient at this angle of attack 18

1.67 (that is, ciﬁ =0.837), the angle of zero lift of the airfoil
]

Is —4.24°, and the slope of the lift curve is 6.95 per radian.

(2) By use of the procedure suggested in the section

entitled “Computational Methods,” five vortices, two
sources, and three sinks were chosen to represent the airfoil
initially (fg. 6 and table I}.

(3) With the first location at the trailing edge, 12 locations
on the airfoil were found corresponding to 30° intervals of
the circle angle .

These locations are shown in figure 6.
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¥

v/l

.a7°

FIGURE 6,—NACA 4412 airfoil showing chosen loestions of sources and vortices slong mean
line and Jocations at which chart readings were taken,

(The primed points correspond to 15° intervals.) Readings
taken at these points from figure 2 are given in table IT.
These readings, multiplied by the appropriate source and
vortex strengths, yielded the values of &, and ¥, due to
sources and vortices given in table II1.

{4) The conjugate functions &, were determined by the
12-point method and are given in table IV. The slopes of
these functions at the trailing-edge point yielded circulation
changes VEI;—;‘-?:O.OOG and EI;;;=—O.538, from which (equa-

tion (1)) EI;§—=O.5I3. This value corresponds to a first ap-
U

proximation to the lift coeflicient in cascade (¢,=1.03).
(5) In table IV are given the values of @, and ¥y, due to

vortex rows multiplied by the ratio !I:T (equation (1)}, the
i

values of &, and ®,, due to source rows, and the function
. @
$r=(Tr—T) o
(6) The additional potential &,=®,~+®,4 &y is plotted in
figure 7. Slopes of this function were measured at points at
which the stretching factor is known from step (1). The

additional velocity », was then computed by equation (10);
the algebraic sum of », and the velocity in isolated flow

S Y R S B I

41 +——Source-vorfex method: first-approximations ¢;= 103
/ 9 Source-vortex method; second Cpproximation; ¢y=0.99_|
\ ¢ Contour-infegral method; first opproximation; ¢;= 0.99
\\ —— Method of reference 8; ¢; =L0OC
L N ——— [solated airfoil flow; c;=1.67
[w] \\
E; = \\\\
) 1 1
P - \\\\\
S ~te
e T ~~d
\ﬁr\{\\\\
h ) F \3 ‘\\
] S ——
'| | — &
| 5;/ [ SO PRI S S -
|| / SRl it I A%
1Y L= \
-~
A
\
/
‘/
[T
7
/
v/
¥
o .2 .2 4 .5 .6 7 .8 2 L0
xje

FIGURE 5.—Velocities on NACA 4412 girfoil in isolated flow and in lattice arrangement. 8=0% ¢=1.082; g=9.7°.
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—————=Source-varfex method;
~08 first oHo,-'oxtrro;m
- —-———-Scuﬂ:e vorfex method: |
L1 qqor‘oxxmcum
e NS [

g 40 8a 120 180 200 240 280 320 380
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FIGURE 7. —The additional flow function ®. against eirele angle for WACA 412 sirfoil in
Iattice arrangement. =0 e=1.03%; ew=9.7".

vielded the cascade velocity (fig. 5). This velocity distribu-
tion, together with the total potential &, formed the basis
for a second approﬁmation (ﬁgs 5 and 7). Results of this

approsimation are ——*—_0.365, and ¢,=0.99.

V‘O .008, V
Comparison of the velocity distribution with that of the
first approximation shows that the process has satisfactorily
converged.

(7) The same 12 points around the airfoil were chosen as
z-points; these, together with four others at 15° intervals
around the nose (primed points in fig. 6) were used as
z/-points. Readings from the chart (fig. 2) are given in
table V. These values were plotted against total potential
&, (arbitrarily fixed at 0 on the lower surface at the trailing
edge). (A sample curve is shown in fig. 8.) These ¢urves
were integrated by planimetry. The results—the disturb-
ance potentials and stream functions ®; and ¥,—are given
in table VI

(8) The function &, (table VI} was obtained by 24-point
harmonic analysis and synthesis, with the use of interpolated
values of ¥, for the points at which it was not found ex-
plicitly. The slope of the curve at the trailing-edge point

N

-.04

-.08,

- 12 \

.o \
a

=& -6 -4 -£
br
FicURE §.—Typical curves for determination of ®¢ and ¥¢ by contour-integral method.

These curves are for point g on NACA #412 airfoil in lattice arrangement. £=0°; ¢=1.032;
as=%7°

2 4 &

yielded V —0.344, from which a lift coefficient ¢;=0.99

was obtained.

(9) The additional potential &,=&,+&.+ @ is plotted in
figure 7. The velocity distribution was obtained as before
and is plotted in figure 5. The process appears to have
essentially converged.

Simultaneous solution of equations {(5) and (8) (table VII)

to find the value of K at Wluch —A2%7 gave K=0.3033,

T Vo
6,——7.57°, and 6,=181.72°.
yielded the angle of zero lift y=—>5.75° and the slope of the

lift curve gc—z=3.71. These values may be compared with

p=—25.94° and dc; =3.71 from reference 8.

deg

In figure 9 is shown a plot of the potential ®; against 8 com-
puted by equation (4). A constant has been added to make
the potential equal to zero on the lower surface at the trailing
edge. The known total potential in cascade &, and the
corresponding values of zfe are given in table VIII. Values
of 8, picked off the plot at points where &; is equal to the

given values of ®;, are shown in the adjacent column. The

correspondence between airfoil position and the angle 8 is
thus determined. For the flow angles X'=1.81° and
N\ =—5.94°, the velocity distributions were computed by
equation (9). Infigure 10 these results are compared with the
distributions given in reference 8. The main results of the
calculations are summarized in table IX.

Example II.—In an effort to obtain in the simplest p0551ble
manner a reference solution at large blade angle, concerning
the accuracy of which there could be little doubt, a lattice
was derived by a modified Joukowski transformation. This
transformation is discussed in detail in the appendix. The
cascade configuration is shown in figure 11 where f=45°,
¢=1.006, and 2,=49° This lattice will be referred to as
the “derived airfoil lattice.”

N

=180 -/40 -/0Q -60 -20 20 &0

Gircle angle, 6 deg

110G (40

FIGURE 9.—Velocity potential on unit circle in {-plane, for NACA 4412 airfoil in Iattice
arrangement, B=0% o=1.032; ¢g=9.7°

Equations (7) and (8) then ;

/160
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Reference 8; ¢; =
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O Ceonfour integraf ¢;=-0.0/
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o Contour integrof, ¢;=0.49
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{a) ap=~5.04°.

1.0

£ -4 .6
xfc
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FigURE 10.—Velocity distributions on NACA 4412 airfoil in latfice arrangement, £=0°; ¢=1.032,
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FIGURE 11,—Derived airfoil lattice. £=45% ¢=1.006; xg=49°,

The procedure followed for the source-vortex method was
similar to that of the first example; the calculations are
outlined in figures 12 fo 14. Because of the unusual shape
of this profile, only one source was used and an additional
sink was inserted at 0.3 chord (fig. 12). TFrom a lift coefli-
cient ¢,;=0.84 in isolated flow, a single approximation yielded
a lift coeflicient ¢;=0.54 in cascade, which was the same as
that derived from the solution by conformal transformation.
Sinee the computed changes in vortex distribution were small,
no further approximations were made by this method. By
reference to the velocity distribution of this approximation
(fig. 13), the process may be seen to have essentially con-
verged to the correct solution.

The final contour integration resulted in a lift coefficient
¢;=0.54 and the velocity distribution shown in figure 13.
The main results of the calculations are summarized in
table X,

LaxeLEY MEMORIAL AERONAUTICAL L.ABORATORY,
Narronar Apvisory COMMITTEE FOR AERONAUTICS,
Lanciey Fierp, Va., Jenuary 10, 1947.

F16URE 12.—Derived airfoil showing ehosen loeations of sources and vortices along mean line
and locations at which chart readings were taken.
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I ! I [ | l t

Q Contour-integral method; c![ =0.54

2.0 + Source-vortex' mefhod; first opproximation: ¢;=0.54__
Derived by conformal irornsformatiorny ¢;=0.54
=== [solated flow; ¢;=C.84
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FIGURE 13.—Velocities on derived airfoil lattice. B=435°; o=1.006; ho=48°.
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F1GTRE 14.—The additional flow function ®« against circle angle for the derived airfoil lattice.
B=45% ¢=1.006; Ag=19°.



APPENDIX
DERIVED AIRFOIL LATTICE

The symbols used in the appendix are defined in figure 15
and should not be confused with similar symbols used in the
main text of the paper.

Consider the transformation (reference 10),

1 _ §.+ K §-+
=3 (e % log, = % log, e (A1)
The unit circle (¢-plane) becomes a lattice of horizontal
straight lines in the z-plane, spaced at unit intervals along the
. . T . .
stagger line, making an angle 5——;3 with the axis of reals.

The solidity of this lattice is

_2 /smh K+ cos’B+cos B
(COS 8 log sinh A +
. 1 sin g
sin § tan vsinh?K-+ cos%)

This relation is plotted in figure 3.

A closed curve enclosing the points {= 4% but not en-
closing the points {=d4-¢® will transform by equation (A1)
into an infinite lattice of closed shapes in the z-plane, spaced

in the same manner as the straight-line Jattice. Such a
curve is the circle
F=ebtit
=e¢q+1<§+r6f§
i
=1.07¢*%4-0.09¢ 37
f
Strength
--------- r/2
V. sin A
ol Ao
> \eX L cos A.og

--.§ =¥+ reid

FIGURE 15 —~Flow singwlarities in ¢-plane for derived airfoil lattice.
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This circle, where 8=45° and K=0.331, becomes the lattice
of profiles that has been referred to as the derived airfoil
lattice. A flow for which this circle is & strcamline and which,
in the z-plane, has no singularitics outside the profiles, is that
due to the system of sources, sinks, and vortices shown in
figure 15. The velocity on the circle boundary due to this
system is

; . T
—T—T<A c0s N+ B sin >\°+02£7’0>

(12
Vo/e 2

where
Aem %a[ sin (¢—38;) sin (¢—6) ]
H,—cos (p—08,) Hy—cos (p—3&) |
o Ji Js 7]
B=emt [HI—COS (¢—8;) H,—cos (¢—é,) |
J -
— p—Vo 1 ot
C=e [HI—COS (¢—81) +[12—COS (¢—8)_
and
b=tan™ eK:—ilrtlz(fs 5

(o)
=)

my=e"¥/r7L e _2rek cos 6

My=e~¥01 - ¢?X 1 2reX cos

The constant T', which is the circulation about each profile
{positive clockwise), is determined by the trailing-edge
condition as

r A :
T_f(,= —2 <—0, cos )\O+% sin 7\0) (Az)

where A, B, and C are cvaluated at the angle ¢ which
corresponds to the trailing edge of the profile. The angle
of zero lifty with respect to the airfoil chord is obtained {rom
equation (A2) by setting I'=0; thus,

n:——tan*lil—ﬁ

The stretching factor from the circle to the lattice is

d , D
E=ryz
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where

D={(cosh 2K—cosh 2y cos 26)*>+} (sinh 2¢ sin 26)?

E=4 cos?B cosh*K (cosh— cos?d} 4+
4 sin’B sinh® K (cosh?y —sin?8)—
sin 28 sin 26 sinh 2K

and ¢ and 6 are obtained from ¢, ¢, r, and § as

o

_ €% sin ¢+rsin §
€% cos ¢-+r cos §

f=tan

e =r cos (8—8) -+ +e?¥—r? sin? (8—4)

The velocity at any point on the surface of a profile is

(7)=(%),
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TABLE I.—STRENGTHS OF SOURCES AND VORTICES CHOSEN TO REPRESENT THE_NACA 4412 AIRFOIL LATTICE

bd i
eV ctls
Vortex Source
location location
(fig. 6) First ap- | Second ap-| (fig. 6) First ap- | Second ap-
proximsa- | proxima- proxima- | proxima-

tion tion tion tion

B8 0.379 0.260 -3 0.097 0.101

& 184 098 * 044 L044

€ .128 .062 € —. 043 —. 041

e L 097 042 ¢ —. 045 —.047

5 .052 023 7 —.033 —. 057

TABLE II.—CHART READINGS FOR NACA 4412 ATRFOIL LATTICE, SOURCE-VORTEX METHOD

@ for vortex row of unit strength ¥ for vortex row of unit strength
Origin at
R%%d.iné &N(ﬂgi\ « 8 ¥ § e ¢ 7 e 8 * ] € ¢ 7
o

0.008 9.008 0.011 0.010 0.004 (. 00% —qg.211 —0.18¢ | —CQ.1¥ —0.120 | —0.070 | —0.025 | —0.003

008 . 008 011 .00 003 0 ~.182 —.158 —. 150 —.096 —. 047 —.013 0
008 . 008 . 009 .005 -. 001 —.002 —-. 115 -—. 092 —.083 —. 044 —. 011 Q —. 010
.06 . 006 . 004 -—.002 —. 007 —. 007 —. 045 —. 030 —.026 - 004 ¢ —.019 —. 056
002 . 002 —. 004 —.012 —.013 —.013 —. 807 —. 001 G —. 002 —.025 —. 40 —. 125
—. 0L —.002 -~ 008 —.015 —. 013 ~. 011 i; —. 001 —.001 —. 018 —. 057 —.115 —.174
o] 1] —.003 —. 005 —. 032 ¢ a —.003 —.002 —~. 024 —.063 —.120 -.183
8 .001 002 005 .010 .016 a .00 ] —.012 —. 044 —.0%0 —.156
—. 007 —. 006 .00L . 008 .015 023 —. 014 —. 006 —. 004 L 001 —.013 —.048 —. 098
—. 015 —. 014 —. 006 0 010 016 —. 058 —~. 042 —.037 —.010 L00L —. 010 —.042
—. 011 —.010 -—.005 02 1] . 004 —.125 —.102 —.094 —. 030 —~.018 a —. 006

] 0 005 004 . 001 0 —. 185 —. 161 —. 18 —. 097 —. 048 —.01i5 1]
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TABLE III~CONTRIBUTIONS OF INDIVIDUAL SOURCE AND VORTEX ROWS TO THE DISTURBANCE FLOW FUNCTION
ON THE NACA 4412 AIRFOIL IN CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METHOD '

Vortex location Source location
Point on airfoil (fg. 6) 8 8 € ¢ 7 o ¥ € e 7
$q due to vortex rows &g due to source rows
0. 0030 0. 0020 0.0013 0. 0004 0 0.0205 0. 0077 —0. 0030 --(. 0011 0. 0001

. 0030 . 0020 L0013 . 0003 [( L0176 . 0066 —. (0020 —. 0006 [

. 0030 L0016 0006 —. 0001 —. 0001 L0112 L0036 —. 0005 ¢ —, 0005
0023 . 0007 —. 0002 —. 0007 —. 0004 L0044 . 0011 0 —. 0008 —.0030
0008 —. 0007 —. 0015 —. 0013 ~. 0007 . 0007 —, 0011 —. 0018 —. 0065

—. 0004 —. 0015 —. 0019 —. 0013 —. 0006 .000L —.0024 —. 0052 —. 0092
—. 0006 —. 0006 —. 0002 . Q L0001 —. 0027 —. 0054 - 7
0 . 0005 0006 0010 . 0008 —. 0019 —. 0040 —. 0083
—. 0026 . 0002 . 0010 L0014 . 0012 L0014 . 0002 . 0006 —. 0022 —. 0052
—. 0057 —, 0011 i} . 0010 . 0008 . 0056 . 0016 0 —. 0004 —. 0022
—. 0042 —. 0009 . 0003 o - . 0002 L0121 . 0041 —. 0008 0 —. 0003
] . 0009 . 0005 . 0001 Q L0180 - 0067 —. 0021 - 0007 0
¥4 due to vortex rows ¥q due to source rows
- S U —0. 0698 —0.0221 . —0.0030 —0.0024 —0. 0001 0. 0002 0. 0004 — . 0004 —{Q. 0002 0
—, 0599 —. 0176 ~. 0060 —. 0013 a L0002 . 0004 —. 0004 —. 0001 0
—. 0348 —. 0081 —. 0014 a . —. (005 L0004 L0004 -, 0002 4 . 0001
—. 0114 —. 0007 a —. (0018 —. (02¢ L0005 .0003 . 0001 0003 . 0004
—. 0005 —. 0005 —. 0032 —. 0038 —. 0065 0002 . 0001 . 0005 . 0006 0007
—. 0003 —. 0035 —. 0073 —. 0111 —. 0091 ¢ . 0001 . 0006 . 0006 . 0006
—. 0010 —. 0044 —. 0081 —. 0116 —. 0096 G . 0002 0001 0
0002 —. 0021 —. 0056 —. 0087 —. 0081 -~ 0002 a —. 0002 —. 0004 —. 0008
—. 0023 —. (002 - 0017 —. 0046 —. (051 —. 0012 —. 0003 —. 0003 —. 0007 —. 0012
—. 1057 —. 0018 . 0001 —. 0009 —. 0322 -—. 0019 —. 0008 1} —. 0004 —. 0008
—. 0386 —. 0092 —. 0022 0 —. 0003 —. 0016 —. 0004 —. 0001 0 —. 0002
—. 0610 —. 0178 —. 0061 —. 0014 1} —. 0003 Q —. 0002 0 ¢

TABLE IV.—~TOTAL EFFECT OF SOURCE AND VORTEX ROWS, AND CORRESPONDING DERIVED POTENTIALS AND
VELOCITIES, ON NACA 4412 AIRFOIL IN CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METHOD

Values at points on figure 6 Values at points where ‘f;: is known
Point ¢ {7 3
T | 3 | @ | e | & | %0 @tegTn| e | @ | & | oo | oz 1w e | o§ | ) F
cVo eVa Ve cVa Vo eV cVy Iy eVa cVo cVa Vs c cVadeg d
& 0} o}
Sources Vortices Upper surfaco
0.0000 | 0.0014 | 0.0240 {—0.1034 | 0.0013 | 0.0067 0.0049 —0.0270 | 0.0033 | 0.6056 | 0.6089 0.0125 [—0.0356 | 7.153 |—(.254 2. 287 2.033
. 0001 L0014 L0216 | —. 0848 L0414 . 0066 . 0295 —.0540 | —. 0015 . 5355 . 5340 L0500 | —. 0427 | 4.541 —.10¢ 2. 002 1,808
. 0007 L0015 L0138 | —.0448 L0513 . 0050 . 0347 —.0810 | —. 0310 . 3592 . 3282 L1000 | —. 0456 8. 500 —. 160 1. 853 1. 693
L0016 . 0009 L0017 | ~. 0168 L0314 L0017 . 0206 —.1080 | —. 0848 1429 0581 2000 [ —.0542 1 2,733 | ~-.148 1719 1571
0021 [ —. 0003 | — 0087 | —. 0146 L0040 | —. 0034 . 0004 —. 1350 | —. 1436 | —. 0365 § —. 1801 L4000 | —.0606 | 2.218 | - 140 1,523
L0019 | —.0020 | —. 0167 | —. 0313 | — 0050 | —.0057 —. 0065 —.1620 | —. 1872 | — 1126 | —-2998 L6000 [ —. 0506 | 2.133 —: 108 1.345 1. 237
0003 | —. 0030 | —.0177 | —.0347 L0037 | —. 0014 . 0014 —. 1801 | —. 2084 L0458 | —. 2543 L8000 [ —.0226 | 2,498 | —. 087 1.178 1.12t
—. 0016 | —.0032 | —.0142 | —.0243 . 0044 . 0029 . 0045 —. 2161 | ~.2290 L1642 | —.0648 L9000 [ —.0078 | 3.226 —. 025 1.078 1053
—. 0037 | —. 0018 | —.0064 | —. 0139 | —. 0098 . 0012 —. 0053 —. 2431 | —. 2566 . 4802 . 2236
—, 0037 L0007 .0046 | —.0205 | —, 0356 | —.0030 —. 0236 —. 2701 | —.2884 . 8365 . 5481 —
-~ 0023 L0022 L0151 1 —.0503 | —. 0505 | —.0046 —. 0338 -, 2071 | —. 3136 | 1.1558 .8422 Lower surface
—. 0007 L0022 .0219 | —.0863 | — 0372 L0015 —. 218 ~. 3241 | —. 3218 1.3716 1.0498 —
- WU B .11 4} L0014 .0240 | —. 1034 L0013 0067 L0049 —. 3511 | —.3208 | 1.4451 1.1243 i
T . 0.0125 |—0.0451 | 8.203 |—0.372 0. 458 0. 086
L0500 | —.0651 4.603 —300 —. 314 —. 014
L1000 | —.0847 3.304 —~-280 —. 541 —. 821
L2000 ) —.1027 | 2.413 —. 248 | ~. 670 | — 924
L4000 | ~—. 1157 | 1.914 | —. 221 —.78¢ | —. 975
L6000 | —.1008 [ 1.903 —. 102 | — 706 | — 083
L8000 | —.0621 | 2.335 | —. 146 | —. 834 | —. 070
L8000 | —. 0328 | 3.0%0 -—.101 —. 845 —. 846

! Velocities along the surface are considered positive when directed from the trailing edge to the leading edge on the lower surface, and from the leading edge to the trailing edge on the upper
surface. .
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TABLE V.—CHART READINGS FOR INTEGRATION WITH RESPECT TO &r; NACA 4412 ATRFOIL IN CASCADE;
CONTOUR-INTEGRAL METHOD ’

\
z \ - b c d e f g bk i i k 1
11,0818
Tr—— To.553 0. 5400 0.3106 0.0401 —0.2022 —0.3230 —0.2911 —0.1064 0.1783 0. 4086 0. 7954 1. 0060
s U bl
&
[\ —0.001L —0.0040 —0.0095 —0.008 0.004 0.020 0.029 0.0213 0.008 0. 001
1] - —. 0085 — 005 021 .0275 . L0063

0 0 —.0015 —. —. 005 006 0195 .0215 0105 —. 00035 —.003
—.003 —. 0015 ~. 0015 —.001 .0065 L0145 .010 —. 0035 —. 0125 —. 004
—.008 - —. 0015 0005 . 003 —. 006 —.0205 - —.016
—.010 —.007 —.002 0 0 . 0025 1} —.012 —.025 —.026 —.018
—.0G —.003 —.001 L0005 1 . 0005 —. 0025 —.014 —.026 —.025 —. 014
—.001 .002 002 0 0 —. 0035 —.014 — 024 —.0215 —.010
007 . . 0065 L0045 Q 0 —.002 —.010 —.018 —.015 —.002
.15 .012 011 0055 1} Q —. 0005 —. 085 —.0125 - .006
022 019 .0145 . 0050 —. 0035 —.003 1] —.0025 —. 006 . 0005 015
027 .22 .014 .01 —. 008 —. 0065 0L —. 0003 —. 0015 0055 .0185
0285 .022 . 0095 - —. 0155 —.0115 003 [+ 0003 008 0215
. L0105 . 0050 —. 0205 —.027 —. 0185 006 4} 5} . 0035 .016

0065 —.0015 —.012 —. 023 —.025 —.01£ —. 0005 .008 .0035 0 .

0 —.003 —. 0085 —.015 —.017 —.00t —.015 021 0155 004 0

b4

—0.002 —0.024 —.083 —0.154 —0.205 —0.217 —(0. 186 —0.130 —0.066 —0.018 —0. 002

i} —.012 - —.132 —.178 —. 187 —. 159 —.102 —. 045 —. 0075 ¢
—.012 —. 0205 —.078 —. 111 —.120 —.095 —. 048 —. 0085 001 —.0125
—. —. 0205 —.018 —.042 —. 048 —. 030 —_ 0025 —.023 —.062
—. 128 —. 070 —. {75 —. 006 —. 0075 4] 002 —.023 —.07 —. 131
—. 157 —.091 —.031 —.003 —. 0003 —. 0015 .002 —. 00335 —. 040 —.100 —. 159
- —.109 —.042 —. 007 [ [} .0015 —.011 —.05 —. 119 —. 181
—. 189 —.119 —. 048 —. 0083 ¢ [+ —. 001 —. 017 —.064 —. 129 —.181
—.186 —. 116 —. 047 —. 008 1] [ —. 0013 —.0175 —.063 —.128 —. 189
—.176 —. 110 —. 0415 —. 005 L0015 o —. 001 —. 014 —.036 —. —.181
—.158 —.0893 —.030 0 0015 —. 0013 — —.044 —.103 —. 160
—. 133 —.073 —.017 0033 —.002 —. 006 —.002 —. 003 —. 0295 —.08! —: 136
—.10L —. 048 — 0025 —. 011 —.017 —. 0085 —.015 —.038 —. 105
—. 0% —. 003 —.0225 —. 054 —.063 —. (44 —. 0155 —. 016 —. 047

—. 0078 L001 —.012 —. 081 —.123 —.130 —.102 —. 059 —.016 0 -

Q —.013 —.009 —.131 —. 079 —. 188 —. 164 —.108 —.0475 —.009

1 Upper surface at trailing edge.
1 Lower surface at trailing edge.

TABLE VI.—DERIVED POTENTIALS AND VELOCITIES ON NACA 4412 AIRFOIL IN CASCADE; CONTOUR-INTEGRAL

METHOD
Values at points on figure § Values where g.‘g is kmown
24 74 2 or 2o % @r z 1 db | de s k7 =
2 cti cVs cVe cVa eV cVs eV [4 cta de ds Va Ve Vs
0} 0] ]
—0.6687 0.0021 —0. 014 0.0158 0.5717 0. 5875 TUpper surface
—. 0571 L0271 —. 0432 0098 . 8302 .54
—.0314 .0382 —.0720 —.0174 3280 3106 *
~. 0098 0257 —. 1008 —.0718 L1119 L0401 0.0125 —. (403 7.153 —0.288 2,287 1.9%9
—.0049 .00% —.1296 —. 1335 —. 0687 - .03 —. 0496 4 541 —. 225 2.002 1777
—. 0071 L0017 —. 140 —. 1607 —. 1237 —. 2841 L1000 —. 0525 3. 500 —. 184 1.853 1.669
—.0114 —. 0012 —.1584 —.1815 —.1465 —.3280 . 20060 —. 0667 2.733 -—.182 1.719 1.537
—.0130 —. 0031 —. 1728 —. 1969 —. 1326 —. 3208 4000 —. 0630 2.218 —. 144 1.523 1.37¢
—. 0164 —. 0035 —. 187 —. 2093 —. 0818 -, 2011 . 8000 —. 0452 2.133 —. (096 1.345 1. 24
: —-. 0151 —. Q15 —. 2017 —. 2189 L0060 —. 2129 . 8000 —. 0189 2.498 —. 047 1.178 1.131
—.0128 —. 0043 —. 2161 —.2332 .1288 —. 1064 . 9000 —. 0042 3.226 —.014 1.078 1.064
—. 0118 —. (056 —. 2305 —. 2467 2747 .0230
- —. 0122 —. 2449 —. 264 L4425 L1783
—.0187 — 0261 —.2737 —. 299 L7982 4386 Lower surface
—. 0362 —.0323 —. 3025 --.3233 1.1187 . T95 —
—.0586 —. 0224 —. 3313 —. 3305 1.3365 1. 0060
—. 0687 L0021 —. 3601 —.3299 1.417 1.0818 0.0125 —0.0528 8.263 —0. 494 0. 458 —0.036
0300 —. 0792 4.603 —. 364 —.314 —. 678
. 1000 —. 0438 3.304 —.310 —. 541 —.851
L2000 —. 1078 2.413 —. 260 —. 676 —. 836
4000 —. 1139 1914 —. 230 —. T34 —. 984
. 6000 —. 1073 1.903 —. 203 —.7 —. 82
) 8000 —.0584 2.335 —.132 —.834 -
. 9000 —.0333 3.080 —. 103 —. 845 —

1Ve10<£ties along the surface are considered positive when directed from the frailing edge to the leading edge on the lower surface, and from the leading edge to the frailing edge on the
upper surface. .
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TABLE VII.—COMPUTATION OF MAPPING FUNCTION CONSTANTS

FOR AERONATUTICS

FOR NACA 4412 AIRFOIL LATTICE

&n 8t Ady
K (deg} (deg) s T v Ve
—7.37 181.62 1.1307 0. 0147 0. 2879 1,4343
-0, 81 132.38 . 9585 L0152 - . 2895 1.2632
—7.85 181. 83 1.0920 L0156 . 2886 1.3062
—7.63 181.73 1.1088 L0157 . 2882 1. 4127
—7.57 181.72 1,1147 L0157 . 2882 1.4186
—7.59 18173 1.1128 L0157 . 2882 1. 4367
—7.57 181.72 1.1144 . 0157 . 2882 14183 _éﬂ)
. A
g=008 X (cash K'—caos 8¢) (cosh K+-cos 8x)
= 2mg 0B (cosh K--cos 6 (cosh K—cos 8,)
sin »o _; [ (sin 8:—sin 8¢ sinh K
T="e tao7 |: Sinh? K-Fstn 65 st 0
r _, [ (tan g.—tan &) tanh K
U=grer; 807 | tanh?R-r-tan 6x tan s

TABLE VIII.—RELATION BETWEEN CIRCLE ANGLE ¢ (:-PLANE) AND LOCATION ON NACA 4412 AIRFOIL IN CASCADE

Upper surface . Lower surface
. g . , [
Point @ﬂcVo 7 zfe (de) Poxgt Prfe1y zfe (deg)
0. 006 1.4 0. 5875 1. 000 —178.3

.80 7.0 . 5400 .520 —167.3

270 45.7 L4108 707 —135.8

. 501 98,6 . 0401 435 —82.9

. T40 145.2 —.2022 .187 ~-35.1

.927 168.2 —-.3280 .033 —11.8

TABLE IX.—CONSTANTS OF NACA 4412 AIRFOIL LATTICE
- - [:}
Method AT e Vy AT/ Ve AT feT7 L. K (detg) derfdag (dgg)
Source-vortex methed; first approximation ... _________. 0. 006 ~—0. 538 —0.324 L03 | ecieos evmmmcmmmmnan o S
Source-vortex method; second approximation. ... ___._ 006 —.365 —:842 09 —
Contour-integral method. . ..o __ m—— - — —. 346 .99 $.3083 181,73 3.71 —5.76
Method of reference 8. . oo e e | S, 1.00 .3109 181,79 3.7 —5.94
TABLE X.—CONSTANTS OF DERIVED AIRFOIL LATTICE
Method } ATWfe Ve ATVeVy ATfc Ty ¢ I (dae‘g) deifdes (d?:g)

Sourée-vortex method; first approximation ... ... —0.083 —0,101 —0.148 0.54 ) SO SO S
Contour-integral methed . . camm [ —.1582 .54 0. 2637 103. 50 ] —2.08
Conformal transformation ..o oo e e cm e f e .54 . 2635 193. 48 5.11 —2.11




